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DETERMINATION OF PERIODIC CHANGES IN THE STRESS STATE OF GROUNDS

FROM VARIATIONS IN INFRARED RADIATION FLUX

UDC 624.131; 550.834V. I. Sheinin, B. V. Levin,1 É. A. Motovilov,

A. A. Morozov, and A. V. Favorov

Examples of the records of variations with time in the signal from an infrared radiometer
caused by the stress variations in the ground specimen and synchronous readings of strain
gauges used to calculate stress variations are given. An algorithm of processing these records
is constructed. A satisfactory coincidence of the stress variations in time determined with the
use of synchronous radiation and tensometric measurement data is shown. The results show
the efficiency of the infrared diagnostics of periodic changes in the stress state of grounds.

The technique developed for the diagnostics of stress variations in grounds with time is based on
the effect of temperature variation in an elastic medium upon adiabatic deformation [1] in which the incre-
ment of the first stress-tensor invariant ∆Π causes the increase in temperature at the point of the medium
∆Ta = AmT0∆Π, where T0 is the initial absolute temperature and Am = α/(ρCp) (α is the linear-expansion
coefficient, Cp is the specific heat at constant pressure, and ρ is the density of the material). In this regime of
deformation, the temperature variations δaT (t) in time t are similar to the function δΠ(t) (with the similarity
factor AmT0):

δaT (t) = AmT0δΠ(t). (1)

Obtaining information on δΠ(t) from δaT (t) measurements seems to be quite straightforward; however,
for geomaterials the difficulty lies in the fact that the values of δaT (t) have the order 0.001 K. In addition,
the conditions of real geomechanical and geophysical experiments do not allow one to use standard methods
of temperature measurement [2], especially for measurements in grounds. These difficulties are overcome
(see, e.g., [3, 4]) by the technique of measuring small temperature variations based on the dependence of
the infrared (IR) radiation power from the body surface on its temperature W (T ) = εTωT

4 (εT < 1 is the
radiating-capacity coefficient and ω is the Stefan–Boltzmann constant) [5, 6]. Transforming W (T (t)) to the
dependence δW (t) = W (T (t)) −W (T0), linearizing the corresponding Ta(t) variations δWa(t) = δW (Ta(t))
with allowance for the smallness of δTa(t)/T0, and denoting Ac = 4εTωT0, we obtain

δWa(t) = AcδTa(t)/T0 = AcAmδΠ(t), (2)

i.e., δWa(t) and δΠ(t) are similar. Owing to the heat exchange in the nonadiabatic deformation regime and
the constant T0, for the temperature variations δT (t), we have the equation

δT (t) = δaT (t) + δhT (t) = AmδΠ(t)T0 + δhT (t) (3)

instead of (1). Here δhT (t) = δh(T (t) − T0) is the temperature variation necessary to restore the thermal
equilibrium distorted by deformation [5]. It follows from (2) and (3) that
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δW (t) = AcAmδΠ(t) +AcδhT (t)/T0. (4)

We assume that the component δUe(t) of the IR measurement-result variations, which is determined
by the variations δW (t), is proportional to them with the coefficient Ar dependent on the instrumentation
parameters; with allowance for (3) and (4), we obtain

δU(t) = δUe(t) + ε(t) = δUa(t) + δUh(t) + ε(t) = AδΠ(t) +ArAcδhT (t)/T0 + ε(t). (5)

In relations (5), δUa(t) and δUh(t) are the terms of δUe(t) corresponding to δaT (t) and δhT (t) in (3) and A =
ArAcAm; the quantity ε(t) takes into account the instrumentation noise in the function δU(t), which describes
the IR measurement results in the absence of external thermal effects. Using the functional dependences (1)–
(5) between the variations δU(t) and δΠ(t), one can make an attempt to identify continuous changes in the
stress state of geomaterials in time on the basis of thermoradiation measurement data. (In [3, 4], Sheinin et
al. used relations between the finite instantaneous increments ∆U and ∆Π.)

Under conditions where the stresses change sufficiently fast in time, one can ignore the function δhT (t)
and confine oneself to an analysis of measurement data under the assumption of quasiadiabaticity; here the
function δΠ(t) is easily determined with the use of the experimental dependence δU(t). To substantiate
this assumption and determine the range of its applicability for various regimes of load variation in time, a
series of experiments was performed, in which the stress variations were identified not only on the basis of
IR radiation power measurements, but also on the basis of the readings of electromechanical gauges. In [3],
the system of measurement, transformation, and automatic transfer, to a computer, of analog signals from
an IR-radiometer Vw(t) and a dynamometer Vl(t) is used and the variations in load on the ground sample [7]
are determined on the basis of the readings of this system. Processing of the synchronized recordings of the
pulse load variations in time, which was performed in [3], showed that using thermoradiation measurement
data, one can determine the moments of stress “jumps” in grounds and estimate their relative magnitudes.

In contrast to the experiments considered in [3], in the experiments described here the load on the
sample and, therefore, the stresses in it were changed in time continuously according to a dependence close
to a periodic one. The loading setup and the arrangement of measuring gauges are given schematically in [3].
The periodic character of the load changes in time was reached by smooth rotations of the steering wheel of
a press performed for each 1.0–1.4 sec.

The values of the output signals Vw(τ) (in volts) obtained after passage of the primary signal from an
IR radiometer through a preamplifier, the first channel of an analog-to-digital converter, and a finite amplifier
are transmitted to the computer at the moments τk = k∆τ (k = 0, . . . , N , N = τN/∆τ , τN is the duration
of the experiment, and ∆τ is the given time step). The time reckoned from the moment of switching-on of
the equipment is denoted by τ . The transformed and amplified signals from the dynamometer Vl(τk) are
transmitted to the computer synchronously with the output signals Vw(τk). The parts of the records before
(τ < τs) and after the changes in loading (τ > τf ) do not contain important information from the viewpoint
of the identification of periodic stress variations. Therefore, below, we consider the functions Vw(t) and Vl(t)
(t = τ − τs, 0 6 t 6 Lt, and Lt = τf − τs) in the time interval τs 6 τ 6 τf of duration Lt during which the
load variations occur.

The characteristic plots of the functions Vw(t) and Vl(t) obtained in the experiments with sandy
ground are shown by curves 1 and 2 in Fig. 1. These plots are oscillatory. At the same time, there is a
low-frequency component on both curves, which is determined by changes in the loading conditions for the
output signal from the dynamometer Vl(τ). In addition to the low-frequency component connected with
changes in loading, the IR-measurement data records can contain a component caused by changes in the
external thermal conditions during the experiment, which is, in essence, the low-frequency noise. Figure 1
shows the low-frequency components Fw(t) and Fl(t) (curves 3 and 4) of the functions Vw(t) and Vl(t), for
which the square approximation on the interval of definition of these functions was used. In a statistical
analysis of measurement data, instead of Vw(t) and Vl(t), the functions

Uw(t) = Vw(t)− Fw(t), Ul(t) = Vl(t)− Fl(t), (6)
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Fig. 1

Fig. 2

which practically do not depend on the low-frequency component and have zero average values, were used.
Before each series of experiments, the output readings of the IR-radiometer channels ∆Vw and the

dynamometer ∆Vl were calibrated with the use of the sum of the principal stresses ∆Π in the sample. To
do this, stepwise loads ∆Qm, whose magnitude was determined by means of the readings of a standard load
gauge installed between the dynamometer and the press plate, were applied to the sample. The quantity
∆Πm corresponding to ∆Qm was calculated from the formula

∆Πm = (∆Qm/S)(1 + 2ξ),

where ξ is the lateral-pressure coefficient in the ground inside the cartridge and S is the area of the pressing
tool. Here, for each ∆Πm, the “jumps” of the levels of output signals from the radiometer ∆Vwm and the
dynamometer ∆Vlm were measured. Then, the coefficients AwΠ = A and AlΠ of the transition from the
variations in the output signals ∆Vw and ∆Vl (in volts) to those of ∆Π (in megapascals) were estimated
by averaging the quantities ∆Vwm/∆Πm and ∆Vlm/∆Πm. In the experiment with the sandy-ground sample
(ξ ≈ 0.49), we obtained AwΠ ≈ 0.28 V/MPa and AlΠ ≈ 1.21 V/MPa. Then, the variations

δΠw(t) = Uw(t)(AwΠ)−1, δΠl(t) = Ul(t)(AlΠ)−1, (7)

whose plots for the experiment with sandy ground are shown in Fig. 2 (curves 1 and 2, respectively), were
calculated. The amplitude of the functions δΠw(t) and δΠl(t) is of the order 0.3 MPa and they execute
approximately 20 oscillations each for the time of the experiment (about 22 sec). The results of the other
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Fig. 3

Fig. 4

experiments are similar to those given above (after appropriate transformations). One can see in Fig. 2 that
the function δΠw(t) is quite close to δΠl(t).

To estimate quantitatively the difference between δΠw(t) and δΠl(t), a statistical analysis of these
functions is required. In the time interval considered, the amplitude of the functions δΠw(t) and δΠl(t) varies
insignificantly; therefore, in this interval, we regard them as the realizations of random stationary processes
[8]. Let us calculate the probabilistic characteristics of these processes. The average values of EΠw and EΠl

are equal to zero owing to the transition to the functions Uw(t) and Ul(t) by formulas (6), and the standard
values of SΠw = (KΠw(0))0.5 = 0.184 MPa and SΠl = (KΠl(0))0.5 = 0.147 MPa differ by approximately 25%.
The correlation functions were calculated from the formula

KY (s) = (M −m)−1
M−m−1∑
i=1

(Yi − EY )(Yi+m − EY ),

where Y (t) is either the function δΠw(t) or δΠl(t), s ∈ [0; 0.3Lt], m = s/∆t, and M = Lt/∆t. The functions
KΠw(s) and KΠl(s) are plotted in Fig. 3 (curves 1 and 2, respectively). As is seen, curves 1 and 2 almost
coincide for s > 0.1 sec, and the deviation near zero is determined by the influence of random high-frequency
errors in the record of Vw(τ) [9]. We note that the results of the experiment in which the high-frequency
noise component of this function (see Fig. 1) is observed even visually was chosen for illustration.

After the Fourier transform of the functions KΠw(s) and KΠl(s), we determine the spectral densities
HΠw(ν) and HΠl(ν) [8, 9]. The dependences of HΠw and HΠl on the frequency ν are given in Fig. 4 (curves 1
and 2). The plots of the correlation functions and densities given in Figs. 3 and 4 almost coincide with
those for the functions δΠw(t) and δΠl(t). A similar coincidence occurs in other experiments as well. It is
important that the positions of the maxima of the densities HΠw(ν) and HΠl(ν) coincide in each experiment.
Thus, the records of the signals from the IR radiometer allow us to estimate the statistical parameters of the
stress evolution in time (see Figs. 3 and 4).
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Fig. 5

In comparing the δΠw(t) and δΠl(t) plots, it is necessary to take into account their displacement
relative to each other in time t0. This time delay occurs because of the inertia of the primary IR-converter
RTN-31 used [6]. To determine t0, we estimate the mutual normalized correlation function KΠlΠw(s) of the
dependences δΠw(t) and ∆Πl(t):

KΠlΠw(sm) = ((M −m)SΠlSΠw)−1
M−m−1∑
i=1

δΠli δΠwi+m .

The function KΠlΠw(s) is plotted in Fig. 5. According to [8], the value of t0 corresponds to the position of
the maximum of this function on the s axis, i.e., t0 = 0.2 sec. The function δΠw(t + t0) is even closer to
δΠl(t) than δΠw(t) (see Fig. 2).

The studies have shown the efficiency of the proposed technique and are of interest owing to the fact
that the practical use of IR radiometry for field measurements of the variations in the stress state of ground
massives can extend the possibilities of experimental observations of dynamic and seismic processes in them.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 98-05-
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